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A phenomenological model for mixed conductors which includes interaction between mobile ions and 
mobile electrons was studied. The model predicts that an abrupt or gradual increase in the electronic 
carrier concentration accompanies the transition to the superionic phase. The magnitude of the jump in 

electronic carrier concentration at the superionic transition shows an increase with decrease in the 
valence and conduction bandwidths, 

1. Introduction 

In this paper, we extend the models pro- 
posed by Huberman (Z) and Rice et al. (2), 
for transition to the superionic phase in 
pure ionic conductors, to mixed conduc- 
tors. The models of Huberman and Rice et 
al. predict that in pure ionic conductors 
there is an abrupt or gradual increase in the 
mobile ion density with increase in temper- 
ature. In our model, besides thermally acti- 
vated creation of mobile ions, we also con- 
sider thermally activated creation of 
electronic charge carriers and introduce an 
effective interaction between the two spe- 
cies. Hence, our model should be applica- 
ble to systems such as Ag,S which have 
small band gaps and also show a transition 
to the superionic phase (3, 4). Although we 
consider mainly intrinsic materials, our 
results are qualitatively correct for the case 
of extrinsic materials. In the next section 
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we describe the model and in the last sec- 
tion we discuss the results of our model. 

2. Model 

Following Huberman and Rice et a/. , we 
assume that the mobile ions are at the inter- 
stitial positions and are associated with a 
Frenkel energy of formation Ui. The mobile 
ions are effectively coupled to each other 
through a strain field associated with the 
displacement of ions from the “ideal” lat- 
tice positions to the interstitial positions. 
This coupling is assumed to be attractive 
with strength CJ. Assuming that for every 
“ideal” lattice position there are g intersti- 
tial positions, the configurational entropy 
associated with the creation of interstitial 
ions is easily computed. There is also a 
vibrational contribution to the total entropy 
associated with the creation of interstitial 
ions and it arises due to the lower localized 
interstitial phonon frequency compared 
with the phonon frequency of the perfect 
crystal (5). This vibrational contribution 
has the form 3kBN,ln I’, where r is the ratio 
of interstitial phonon frequency to that of 
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the perfect lattice and N, is the number of 
interstitial ions. The Helmholtz free energy 
density of the ions measured relative to the 
perfectly ordered state can now be written 
as 

d,,, = A,,/N = n, U, - nf U 
+ 2kB T[niln n, + (1 - n,)ln( 1 - 4) 

+ nJn g + 3 In IJ, (1) 

where ni is the fraction N,/N and U, and U 
are positive. 

To calculate the Helmholtz free energy of 
electrons in the solid, we assume that at T 
= 0 K there are no free electronic carriers 

and that at nonzero temperatures electronic 
carriers are created intrinsically through 
excitation across a band gap of magnitude 
& Furthermore, following Adler and 
Brooks (6) we treat the electrons and holes 
as independent phases with chemical po- 
tentials pC and CL,, respectively. The 
Helmholtz free energy of the electronic car- 
riers can therefore be written as 

41. = N,P, + 0’ - N&-G 
- ow,,. - wh,,,. (2) 

Since electrons and holes obey Fermi- 
Dirac statistics, Eq. (2) takes the form 

&. = N,p, + W - N&, - kBT I_“w p,(E) In [ 1 + ew( 571 dE 
- bT /Im p,(E) In [ 1 + exp( sq] dE, (3) 

where p,(E) and p,(E) are the density of 
states functions of the conduction and va- 
lence bands, respectively, and we have 
substituted expressions for (PV),,. and 
Pv>,,, derived from the grand canonical 
ensemble formulation (7). 

In the narrow band limit, the density of 
states functions can be approximated by 
Dirac delta functions, i.e., we can write 

p,(E) = NW - &I, (44 

p,(E) = NW - E,L (4b) 

where EC and E, are the conduction band 
and valence band energies, respectively. In 
this approximation the electronic free en- 
ergy can be written as 

A,,. = Nepc + 0’ - N&v 

- k,T{ln [l + exp(e)] 

+ In [ 1 + exp(Pvki:)]]. (5) 

Minimizing A,,. with respect to CL, and pV 
and using the resulting expressions for /.L, 

and p, in A,,., we can write 

= n& + 2ksT[n,ln n, 
+ (1 - dln(l - ~11, (6) 

where n, is the fraction N,/N and .cz&,, is 
measured relative to the valence band edge. 
We should expect the mobile electrons and 
holes to interact with each other and so we 
include a quadratic term in n, in the expres- 
sion for the free energy density and write 

.&,. = n,E, - n: V + 2kBT[n,ln n, 
+ (1 - n,)ln(l - 4J1, (7) 

where V is the effective electron-electron 
interaction strength. It is reasonable to ex- 
pect the effective electron-electron inter- 
action to lower the free energy as these 
electronic carriers are mobile and lead to a 
net screening of the electron-electron re- 
pulsions. 

The free energy density of electrons can 
also be computed in the effective mass ap- 
proximation. In this approximation, we as- 
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sume that p,(E) and p,(E) are given by 

(E - E&‘/l, 

E L EC, (ga) 

(E, - E)1’2, 
E 5 E,, (8b) 

where m ; and tn; are the average effective 
masses of the electron and hole, respec- 
tively, and the number of states in each 
band is restricted to N. The electronic free 
energy in this approximation is given by 

41. = NE, + Nep, + (N - N&v 

- & b T 

+ %F3,2 ( cv$j], c9) 

where & is the mean valence band energy 
and cw,, (Y,,, and F,,(y) are given by 

(Y,,~ = $(k$$B)3’2, (lOa) 

F,(Y) = I,” exp(x fny, + 1 cfx. (lob) 

Minimizing A,,. with respect to /.L, and CL, 
and evaluating the integrals F,(y) in the 
Boltzmann limit, we can write 

A,,. = N&r + N,E, 

where a* = ((Y,(Y,,)~‘~ and e is the natural 
number. Assuming that the electronic free 
energy density is measured relative to the 
mean valence band energy and invoking ef- 
fective electron-electron interactions, we 
can write the free energy density SB,,., in the 
effective mass approximation, as 

x [ 4In 4 + O&$&J]. (12) 

The central assumption of the model is 
that the mobile electrons and the mobile 
ions have an effective attractive interaction 
Ieading to a lowering of the total free en- 
ergy. This indeed is possible since creation 
of interstitial ions reduces the Madelung 
splitting of the bands. Furthermore, over- 
lap of cation and anion orbitals is reduced 
due to the increased mean distance be- 
tween the two species (4). This results in a 
reduction in the covalent splitting of the 
bands as well. Both these factors tend to 
decrease the band gap. Thus it is reason- 
able to assume that the creation of mobile 
ions favor creation of electronic carriers. It 
is also known that the mean cation-cation 
separation in the superionic phase is 
smaller than that in the normal phase (4). 
So, we should expect cation-cation repul- 
sion to suppress creation of mobile ions, 
thus acting against the strain field. The elec- 
tronic carriers, being mobile, tend to screen 
this repulsive interaction and hence in turn 
favor creation of mobile ions. This aspect 
of creation of mobile ions favoring creation 
of electronic carriers and vice versa can be 
incorporated into the total free energy ex- 
pression through a term of the form 

dral.-ion = -WWIlifZ,* (13) 

The total free energy density of the solid is 
given by the sum of all the three contribu- 
tions, i.e., 

4l3, = 4on + J&. + J&4.-ion. (14) 

The density of mobile ions and mobile 
electrons can be calculated as a function of 
temperature by minimizing the total free 
energy density with respect to the quanti- 
ties n, and n,. In the narrow-band approxi- 
mation we have 

x exp [ kT (Vi - 2Lhq -WI~)]}~~, (15a) 



336 S. RAMASESHA 

n, = {l + ew[& 

x (E, - 2Vn, - Wn,) II -‘. (Mb) 

In the effective mass approximation, ni is 
still given by Eq. (15a) but n, is given by 

7-a”(r” 
n, = - N 

x exp - kT (E, - 2Vne - Wnd] . (15c) 
3 

We have solved the above equations nu- 
merically for various reasonable values of 
the parameters to obtain n, and ni as func- 
tions of temperature. 

3. Results and Discussion 

Our model predicts a transition to the 
superionic phase, for suitable values of the 
parameters, as should be expected from 
earlier work. The superionic transition is 

r 
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FIG. 1. Dependence of n, and n, on temperature in 
the narrow band limit. (a) n,(T) for U, = 0.3, U = 0.25, 
g=l,r=OS,E,= l.O,V=O.l, W=0.2.(b)n,(Z’)for 
Es = 0.3, with the rest of the parameters remaining as 
in (a). (c) n,(Z). This is very nearly the same for both 
sets of parameters (a) and (b) 

IO c 

T (arbttrary unlts) 

FIG. 2. Dependence of n, and n, on temperature in 
the effective mass approximation. (a) n,(T) for m,* = 1 
m,, (b) n,(7) for m,* = 10 m,, (c) n,(Z’) for rn: = 20 m,, 
and (d) n,(T) which is independent of m. The values of 
the remaining parameters are the same as in Fig. la. 

accompanied by an electronic transition in 
both the narrow band limit and in the effec- 
tive mass approximation. The change in 
electronic carrier concentration at the tran- 
sition is abrupt if the ionic transition is 
abrupt and is gradual if the latter is gradual. 
For large band gaps, the electronic carrier 
concentration continues to increase beyond 
the transition, while for small band gaps the 
electronic carrier concentration saturates 
immediately above the transition (Fig. 1). 
The actual carrier concentration, in the 
broad band limit, besides being strongly de- 
pendent on E,, is also found to depend 
strongly on the average effective mass or 
the bandwidths. The larger the effective 
mass, the higher is the electronic carrier 
concentrations at all temperatures (Fig. 2). 
This strong dependence of the electronic 
carrier concentration on the bandwidths is 
to be expected, as the electronic contribu- 
tion to entropy, for a given n,, decreases 
with increasing bandwidth. The transition 
temperature depends strongly upon g, the 
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number of interstitial positions in the lattice 
available for every “ideal” lattice position. 
However, the transition does not depend 
strongly on the parameter r. We also find 
that the electron-electron interaction pa- 
rameter, V, does not play an important role 
in the transition. This is to be expected 
since our choice of the parameters in &ion 
have been such as to provide for a supe- 
rionic transition. Given that a superionic 
transition does take place the term Wtti in 
Eq. (15b) dominates, forcing an electronic 
transition even if electron-electron interac- 
tion is weakly repulsive. 

It is possible to extend our model to ex- 
trinsic materials exhibiting superionic tran- 
sition and to predict the behavior of elec- 
tronic carrier concentration near the 
superionic transition. Let us assume that 
our extrinsic material is doped only with 
donors (acceptors). The electronic free en- 
ergy in the narrow-band approximation can 
be written as 

det. = n,E; + k,T [n,ln n, 
I 

+ (1 - n,)ln(l - n,)] +x 
[ :ln: 

+ (1 - $ln(l - :)I}, (16) 

where Ek is the energy gap between donor 
(acceptor) levels and the conduction (va- 
lence) band edge and x is the ratio of num- 
ber of donors (acceptors) to the number of 
states in the band. Assuming that the donor 
(acceptor) levels are rigidly fixed and that 
the conduction (valence) band shifts to 
lower (higher) energies with the creation of 
mobile ions (for reasons already discussed), 
we obtain qualitatively the same tempera- 
ture dependence of n, near the superionic 
transition as in the case of intrinsic mate- 
rials. However, we find two differences. 

First, the maximum carrier concentration 
in the extrinsic materials does not exceed X. 
Second, the nature of the electronic de- 
pends weakly on x, with the dependence 
becoming weaker as x increases. The same 
similarities between intrinsic and extrinsic 
materials are found even in the effective 
mass approximation. The analysis becomes 
more complicated in compensated mate- 
rials. Even so, it is reasonable to expect an 
electronic transition to accompany supe- 
rionic transition (if these materials indeed 
exhibit the latter), since the same driving 
force should be present in this case as well. 
In conclusion, our model predicts that 
mixed conductors exhibit a superionic and 
an electronic transition, both at the same 
temperature, the latter being more pro- 
nounced for low activation energies and 
high effective mass. 
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